Environmental losses and driving forces of nitrogen flow in two agricultural towns of Hebei province during 1997–2017

2020 
Abstract Excessive nitrogen (N) losses from food production and consumption have resulted in noticeable environmental impacts, e.g., air pollution and climate change, saturation of soil N, and water eutrophication. In the present study, a rural-scale N flow model was constructed in Quzhou county, Hebei province to investigate the characteristics of the N flux, N use efficiency (NUE), and N loss and their driving factors in the food production and consumption system during 1997–2017. Our results show that the N fluxes of the crop-production subsystem (CPS), the livestock-breeding subsystem (LBS), and the household-consumption subsystem (HCS) all followed an upward trend. During 1997–2017, the N losses from the system were high (51.38%), and the CPS was a major source. When the N fertilizer application level was optimal (403–475 kg N ha−1), the NUE in the CPS (NUEc) decreased sharply, resulting in a higher N cost than that observed at larger scales. For the LBS, the NUE of animal feed (NUEa) was high (46.37%); however, the waste utilization rate of the HCS was below 30%. The chemical fertilizer application level, feed input, animal-food demand, and livestock manure application level were closely related to the environmental N losses. Due to the lack of reasonable N treatment and utilization methods, the increasing N losses are expected to have a large future impact on environmental issues such as haze, soil acidification, and frequent algal blooms. Therefore, adjusting N management in the processes of food production and consumption is of great significance to the improvement of global NUE and reduction of environmental pollution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    5
    Citations
    NaN
    KQI
    []