Soil acidification is the buildup of hydrogen cations, which reduces the soil pH. Chemically, this happens when a proton donor gets added to the soil. The donor can be an acid, such as nitric acid, sulfuric acid, or carbonic acid. It can also be a compound such as aluminium sulfate, which reacts in the soil to release protons. Acidification also occurs when base cations such as calcium, magnesium, potassium and sodium are leached from the soil. Soil acidification is the buildup of hydrogen cations, which reduces the soil pH. Chemically, this happens when a proton donor gets added to the soil. The donor can be an acid, such as nitric acid, sulfuric acid, or carbonic acid. It can also be a compound such as aluminium sulfate, which reacts in the soil to release protons. Acidification also occurs when base cations such as calcium, magnesium, potassium and sodium are leached from the soil. Soil acidification naturally occurs as lichens and algae begin to break down rock surfaces. Acids continue with this dissolution as soil develops. With time and weathering, soils become more acidic in natural ecosystems. Soil acidification rates can vary, and increase with certain factors such as acid rain, agriculture, and pollution. Rainfall is naturally acidic due to carbonic acid forming from carbon dioxide in the atmosphere. This compound causes rainfall pH to be around 5.0-5.5. When rainfall has a lower pH than natural levels, it can cause rapid acidification of soil. Sulfur dioxide and nitrogen oxides are precursors of stronger acids that can lead to acid rain production when they react with water in the atmosphere. These gases may be present in the atmosphere due to natural sources such as lightning and volcanic eruptions, or from anthropogenic emissions. Basic cations like calcium are leached from the soil as acidic rainfall flows, which allows aluminum and proton levels to increase. Plant roots acidify soil by releasing protons and organic acids so as to chemically weather soil minerals. Decaying remains of dead plants on soil may also form organic acids which contribute to soil acidification. Acidification from leaf litter on soil is more pronounced under coniferous trees such as pine, spruce and fir, which return fewer base cations to the soil, than under deciduous trees. Certain parent materials also contribute to soil acidification. Granites and their allied igneous rocks are called 'acidic' because they have a lot of free quartz, which produces silicic acid on weathering. Also, they have relatively low amounts of calcium and magnesium. Some sedimentary rocks such as shale and coal are rich in sulfides, which, when hydrated and oxidized, produce sulfuric acid which is much stronger than silicic acid. Many coal soils are too acidic to support vigorous plant growth, and coal gives off strong precursors to acid rain when it is burned. Marine clays are also sulfide-rich in many cases, and such clays become very acidic if they are drained to an oxidizing state. Soil amendments such as fertilizers and manures can cause soil acidification. Sulfur based fertilizers can be highly acidifying, examples include elemental sulfur and iron sulfate while others like potassium sulfate have no significant effect on soil pH. While most nitrogen fertilizers have an acidifying effect, ammonium-based nitrogen fertilizers are more acidifying than other nitrogen sources. Ammonia-based nitrogen fertilizers include ammonium sulfate, diammonium phosphate, monoammonium phosphate, and ammonium nitrate. Organic nitrogen sources, such as urea and compost, are less acidifying. Nitrate sources which have little or no ammonium, such as calcium nitrate, magnesium nitrate, potassium nitrate, and sodium nitrate, are not acidifying. Acidification may also occur from nitrogen emissions into the air, as the nitrogen may end up deposited into the soil. Animal livestock is responsible for 64 percent of man-made ammonia emissions. Anthropogenic sources of sulfur dioxides and nitrogen oxides are a large contributor to an increase in acid rain production. The use of fossil fuels and motor exhaust are the largest anthropogenic contributors to sulfuric gases and nitrogen oxides, respectively. Soil acidification can cause damage to plants and organisms in the soil. In plants, soil acidification results in smaller, less durable roots. Acidic soils sometimes damage the root tips restricting further growth. Plant height is impaired and seed germination also decreases. Soil acidification impacts plant health, resulting in reduced cover and lower plant density. Soil acidification is directly linked to a decline in endangered species of plants.