Charged nanoparticles in thin film and nanostructure growth by chemical vapour deposition

2010 
The critical role of charged nanoclusters and nanoparticles in the growth of thin films and nanostructures by chemical vapour deposition (CVD) is reviewed. Advanced nanoparticle detection techniques have shown that charged gas-phase nuclei tend to be formed under conventional processing conditions of thin films and nanostructures by thermal, hot-wire and plasma CVD. The relation between gas-phase nuclei and thin film and nanostructure growth has not been clearly understood. In this review it will be shown that many films and nanostructures, which have been believed to grow by individual atoms or molecules, actually grow by the building blocks of such charged nuclei. This new growth mechanism was revealed in an attempt to explain many puzzling phenomena involved in the gas-activated diamond CVD process. Therefore, detailed thermodynamic and kinetic analyses will be made to draw the conclusion that the well-known phenomenon of deposition of less stable diamond with simultaneous etching of stable graphite should be an indication of diamond growth exclusively by charged nuclei formed in the gas phase. A similar logic was applied to the phenomenon of simultaneous deposition and etching of silicon, which also leads to the conclusion that silicon films by CVD should grow mainly by the building blocks of charged nuclei. This new mechanism of crystal growth appears to be general in many CVD and some physical vapour deposition (PVD) processes. In plasma CVD, this new mechanism has already been utilized to open a new field of plasma-aided nanofabrication.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    253
    References
    50
    Citations
    NaN
    KQI
    []