On the optimal sizing of batteries for electric vehicles and the influence of fast charge

2018 
Abstract We provide a brief summary of advanced battery technologies and a framework (i.e., a simple model) for assessing electric-vehicle (EV) architectures and associated costs to the customer. The end result is a qualitative model that can be used to calculate the optimal EV range (which maps back to the battery size and performance), including the influence of fast charge. We are seeing two technological pathways emerging: fast-charge-capable batteries versus batteries with much higher energy densities (and specific energies) but without the capability to fast charge. How do we compare and contrast the two alternatives? This work seeks to shed light on the question. We consider costs associated with the cells, added mass due to the use of larger batteries, and charging, three factors common in such analyses. In addition, we consider a new cost input, namely, the cost of adaption, corresponding to the days a customer would need an alternative form of transportation, as the EV would not have sufficient range on those days.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    10
    Citations
    NaN
    KQI
    []