language-icon Old Web
English
Sign In

Lithium battery

Lithium batteries are primary batteries that have metallic lithium as an anode. These types of batteries are also referred to as lithium-metal batteries.Addition of bromine monochloride can boost the voltage to 3.9 V and increase energy density. Lithium batteries are primary batteries that have metallic lithium as an anode. These types of batteries are also referred to as lithium-metal batteries. They stand apart from other batteries in their high charge density (long life) and high cost per unit. Depending on the design and chemical compounds used, lithium cells can produce voltages from 1.5 V (comparable to a zinc–carbon or alkaline battery) to about 3.7 V. Disposable primary lithium batteries must be distinguished from secondary lithium-ion or a lithium-polymer, which are rechargeable batteries. Lithium is especially useful, because its ions can be arranged to move between the anode and the cathode, using an intercalated lithium compound as the cathode material but without using lithium metal as the anode material. Pure lithium will instantly react with water, or even moisture in the air; the lithium in lithium ion batteries is in a less reactive compound. Lithium batteries are widely used in portable consumer electronic devices, and in electric vehicles ranging from full sized vehicles to radio controlled toys. The term 'lithium battery' refers to a family of different lithium-metal chemistries, comprising many types of cathodes and electrolytes but all with metallic lithium as the anode. The battery requires from 0.15 to 0.3 kg of lithium per kWh. As designed these primary systems use a charged cathode, that being an electro-active material with crystallographic vacancies that are filled gradually during discharge. The most common type of lithium cell used in consumer applications uses metallic lithium as anode and manganese dioxide as cathode, with a salt of lithium dissolved in an organic solvent. The liquid organic electrolyte is a solution of an ion-forming inorganic lithium compound in a mixture of a high-permittivity solvent (propylene carbonate) and a low-viscosity solvent (dimethoxyethane). Engineers at the University of California San Diego have developed a breakthrough in electrolyte chemistry that enables lithium batteries to run at temperatures as low as -60 °C with excellent performance. The new electrolytes also enable electrochemical capacitors to run as low as -80 °C — their current low-temperature limit is -40 °C. While the technology enables extreme low-temperature operation, high performance at room temperature is still maintained. The new electrolyte chemistry could also increase the energy density and improve the safety of lithium batteries and electrochemical capacitors. Lithium batteries find application in many long-life, critical devices, such as pacemakers and other implantable electronic medical devices. These devices use specialized lithium-iodide batteries designed to last 15 or more years. But for other, less critical applications such as in toys, the lithium battery may actually outlast the device. In such cases, an expensive lithium battery may not be cost-effective.

[ "Lithium", "Battery (electricity)", "nickel lithium battery" ]
Parent Topic
Child Topic
    No Parent Topic