Enhanced suicidal erythrocyte death in mice carrying a loss-of-function mutation of the adenomatous polyposis coli gene.

2012 
Loss-of-function mutations in human adenomatous polyposis coli (APC) lead to multiple colonic adenomatous polyps eventually resulting in colonic carcinoma. Similarly, heterozygous mice carrying defective APC (apcMin/+) suffer from intestinal tumours. The animals further suffer from anaemia, which in theory could result from accelerated eryptosis, a suicidal erythrocyte death triggered by enhanced cytosolic Ca2+ activity and characterized by cell membrane scrambling and cell shrinkage. To explore, whether APC-deficiency enhances eryptosis, we estimated cell membrane scrambling from annexin V binding, cell size from forward scatter and cytosolic ATP utilizing luciferin–luciferase in isolated erythrocytes from apcMin/+ mice and wild-type mice (apc+/+). Clearance of circulating erythrocytes was estimated by carboxyfluorescein-diacetate-succinimidyl-ester labelling. As a result, apcMin/+ mice were anaemic despite reticulocytosis. Cytosolic ATP was significantly lower and annexin V binding significantly higher in apcMin/+ erythrocytes than in apc+/+ erythrocytes. Glucose depletion enhanced annexin V binding, an effect significantly more pronounced in apcMin/+ erythrocytes than in apc+/+ erythrocytes. Extracellular Ca2+ removal or inhibition of Ca2+ entry with amiloride (1 mM) blunted the increase but did not abrogate the genotype differences of annexin V binding following glucose depletion. Stimulation of Ca2+-entry by treatment with Ca2+-ionophore ionomycin (10 μM) increased annexin V binding, an effect again significantly more pronounced in apcMin/+ erythrocytes than in apc+/+ erythrocytes. Following retrieval and injection into the circulation of the same mice, apcMin/+ erythrocytes were more rapidly cleared from circulating blood than apc+/+ erythrocytes. Most labelled erythrocytes were trapped in the spleen, which was significantly enlarged in apcMin/+ mice. The observations point to accelerated eryptosis and subsequent clearance of apcMin/+ erythrocytes, which contributes to or even accounts for the enhanced erythrocyte turnover, anaemia and splenomegaly in those mice.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    90
    Citations
    NaN
    KQI
    []