Sculpting the Analytical Volume in and around Nanoparticle Sensors Using a Multilayer Geometry

2013 
The use of structured nanoparticles as optical contrast agents has led to new sensing opportunities in localizing the analytical volume within or outside the particle. Here we examine the use of structured nanoparticles for controlling the sensed analytical volume and figures of merit for their use. Nanolayered alternating metal–dielectric particles (nanoLAMPs), consisting of metal–dielectric nanospheres, are a flexible and highly tunable structure and used here to illustrate the concept of sculpting the analytical volume associated with a nanoparticle. The alternating metal and dielectric shells in LAMPs are designed such that, when illuminated, the plasmonic coupling of metal shells results in amplified electric fields in specific volumes. The strength and extent of regions with amplified fields (hot spots) in and around a LAMP are at the expense of other regions with depleted fields. A rigorous Mie theory formulation is used to model electric field redistributions. A genetic algorithm-based strategy is...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []