Granulocyte-macrophage colony-stimulating factor-induced protein tyrosine phosphorylation of microtubule-associated protein kinase in human neutrophils.
1992
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF), formylmethionylleucylphenylalanine, tumor necrosis factor alpha, platelet-activating factor, phorbol ester (phorbol 12-myristate 13-acetate), and calcium ionophore A23187 are able to increase the level of tyrosine phosphorylation of different protein substrates, as demonstrated by Western blotting with anti-phosphotyrosine antibody (anti-PY). A protein of 41 kDa (p41) consistently showed more intense reactivity to anti-PY than controls. Blots treated with anti-PY, stripped of the antibody, and reblotted with microtubule-associated protein kinase (MAPK, p42MAPK) antibody show only one band. The molecular mass of that band exactly matches that of p41. MAPK-reactive protein is present in control and stimulated cells, although the intensity of the band is greater in the latter. GM-CSF-stimulated phosphorylation of p41 is time- and dose-dependent. Anti-MAPK antibody detects a single band of 41 kDa, whose intensity increases with time of incubation and concentration of the agonist. Thus, the anti-MAPK antibody appears to react better to the phosphorylated form of p41 from GM-CSF-stimulated cells than to the dephosphorylated form. The p41 and MAPK proteins are localized in the cytosol. Finally, MAPK immunoprecipitates were probed with anti-PY in Western blots and a band of 41 kDa was found. In summary, these results suggest that this 41-kDa protein in neutrophils that is tyrosine phosphorylated in response to GM-CSF and other stimuli is MAPK. Its phosphorylation may represent an early and crucial signal associated with the GM-CSF neutrophil stimulation cascade.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
3
References
57
Citations
NaN
KQI