플라즈마 고온반응기를 이용한 폐슬레이트 비활성화 연구

2020 
The capacity of the designated landfill site for asbestos-containing waste is approaching its limit because the amount of asbestos-containing slate is increasing every year. There is a need for a method that can safely and inexpensively treat asbestos-containing slate in large capacity and at the same time recycle it. A cement kiln can be an alternative for heat treatment of asbestos-containing slate. We intend to develop a pilot scale device that can simulate the high temperature environment of a cement kiln using a high temperature plasma reactor in this study. In addition, this reactor can be used to inactivate asbestos in the slate and to synthesize one of the minerals of cement, to confirm the possibility of recycling as a cement raw material. The high-temperature plasma reactor as a pilot scale experimental apparatus was manufactured by downsizing to 1/50 the size of an actual cement kiln. The experimental conditions for the deactivation test of the asbestos-containing slate are the same as the firing time of the cement kiln, increasing the temperature to 200-2,000oC at 100oC intervals for 20 minutes. XRD, PLM, and TEM-EDS analyses were used to characterize mineralogical characteristics of the slate before and after treatment. It was confirmed that chrysotile [Mg3Si2O5(OH)4] and calcite (CaCO3) in the slate was transformed into forsterite (Mg2SiO4) and calcium silicate (Ca2SiO4), a cement constituent mineral, at 1,500oC or higher. Therefore, this study may be suggested the economically and safely inactivating large capacity asbestoscontaining slate using a cement kiln and the inactivated slate via heat treatment can be recycled as a cement raw material.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []