Anti-coronavirus disease 2019 (COVID-19) targets and mechanisms of puerarin.

2020 
The present study aimed to uncover the pharmacological function and underlying mechanism of puerarin as a potential treatment for COVID-19, using an in silico methodology, including network pharmacology and molecular docking. The pivotal targets of puerarin to treat COVID-19 were identified and included the epidermal growth factor receptor (EGFR), tumour necrosis factor (TNF), tumour protein p53 (TP53), caspase 3 (CASP3), RELA proto-oncogene (RELA), Fos proto-oncogene (FOS), caspase 8 (CASP8), prostaglandin-endoperoxide synthase 2 (PTGS2), interleukin 2 (IL2), protein kinase CB (PRKCB), B cell lymphoma/leukaemia gene-2 (BCL2), protein kinase CA (PRKCA), nitric oxide synthase 3 (NOS3) and peroxisome proliferator-activated receptor gamma (PPARG). Functionally, the anti-COVID-19 action of puerarin was associated with the suppression of oxidative stress and inflammatory cascades, and cell apoptosis. The signalling pathways of puerarin to treat COVID-19 included modulation of the pathways of apoptosis, IL-17 signalling, mitogen-activated protein kinase (MAPK) signalling and TNF signalling. Molecular docking data illustrated the binding capacity of puerarin with COVID-19 and the effective anti-COVID-19 activity of puerarin. Taken together, our current network pharmacology-based findings revealed the pharmacological role of puerarin in the treatment of COVID-19. Furthermore, the bioinformatic findings elucidated that some of these pivotal targets might serve as potential molecular markers for detecting COVID-19.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    6
    Citations
    NaN
    KQI
    []