Rotational Diode: Clockwise/Counterclockwise Asymmetry in Conducting and Mechanical Properties of Rotating (semi)Conductors

2021 
It is difficult to imagine an isolated classical object which possess different moments of inertia when it is uniformly rotated about the same axis with the same angular frequency in opposite, clockwise and counterclockwise, directions. We argue that due to quantum effects, certain (semi-) conductors should exhibit asymmetry in their mechanical and conducting properties with respect to the opposite rotations. We show that a cylinder made of a suitably chosen semiconductor, coated in a metallic film and placed in the magnetic-field background, can serve as a “rotational diode”, which conducts electricity only at a specific range of angular frequencies. The critical angular frequency and the direction of rotation can be tuned with the magnetic field’s strength. Mechanically, the rotational diode possesses different moments of inertia when rotated in clockwise and counterclockwise directions. These effects emerge as a particularity of the Fermi-Dirac statistics of electrons in rotating conductors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    1
    Citations
    NaN
    KQI
    []