language-icon Old Web
English
Sign In

Clockwise

Two-dimensional rotation can occur in two possible directions. A clockwise (typically abbreviated as CW) motion is one that proceeds in the same direction as a clock's hands: from the top to the right, then down and then to the left, and back up to the top. The opposite sense of rotation or revolution is (in North American English) counterclockwise (CCW) or (in Commonwealth English) anticlockwise (ACW). Two-dimensional rotation can occur in two possible directions. A clockwise (typically abbreviated as CW) motion is one that proceeds in the same direction as a clock's hands: from the top to the right, then down and then to the left, and back up to the top. The opposite sense of rotation or revolution is (in North American English) counterclockwise (CCW) or (in Commonwealth English) anticlockwise (ACW). Before clocks were commonplace, the terms 'sunwise' and 'deasil', 'deiseil' and even 'deocil' from the Scottish Gaelic language and from the same root as the Latin 'dexter' ('right') were used for clockwise. 'Widdershins' or 'withershins' (from Middle Low German 'weddersinnes', 'opposite course') was used for counterclockwise. The terms clockwise and counterclockwise can only be applied to a rotational motion once a side of the rotational plane is specified, from which the rotation is observed. For example, the daily rotation of the Earth is clockwise when viewed from above the South Pole, and counterclockwise when viewed from above the North Pole (considering 'above a point' to be defined as 'farther away from the center of earth and on the same ray'). Clocks traditionally follow this sense of rotation because of the clock's predecessor: the sundial. Clocks with hands were first built in the Northern Hemisphere (see Clock), and they were made to work like horizontal sundials. In order for such a sundial to work north of the equator during spring and summer, and north of the Tropic of Cancer the whole year, the noon-mark of the dial must be placed northward of the pole casting the shadow. Then, when the Sun moves in the sky (from east to south to west), the shadow, which is cast on the sundial in the opposite direction, moves with the same sense of rotation (from west to north to east). This is why hours must be drawn in horizontal sundials in that manner, and why modern clocks have their numbers set in the same way, and their hands moving accordingly. For a vertical sundial (such as those placed on the walls of buildings, the dial being below the post), the movement of the sun is from right to top to left, and, accordingly, the shadow moves from left to down to right, i.e., counterclockwise. This effect is caused by the plane of the dial having been rotated through the plane of the motion of the sun and thus the shadow is observed from the other side of the dial's plane and is observed as moving in the opposite direction. Some clocks were constructed to mimic this. The best-known surviving example is the astronomical clock in the Münster Cathedral, whose hands move counterclockwise. Occasionally, clocks whose hands revolve counterclockwise are nowadays sold as a novelty. Historically, some Jewish clocks were built that way, for example in some synagogue towers in Europe such as the Jewish Town Hall in Prague, to accord with right-to-left reading in the Hebrew language. In 2014 under Bolivian president Evo Morales, the clock outside the Legislative Assembly in Plaza Murillo, La Paz, was shifted to counterclockwise motion to promote indigenous values. Typical nuts, screws, bolts, bottle caps, and jar lids are tightened (moved away from the observer) clockwise and loosened (moved towards the observer) counterclockwise in accordance with the right-hand rule.

[ "Astronomy", "Geometry", "Structural engineering", "Mechanical engineering", "Rotation", "tectonic rotation", "Orocline" ]
Parent Topic
Child Topic
    No Parent Topic