Flexible Ta/TiOx/TaOx/Ru Memristive Synaptic Devices on Polyimide Substrates.

2021 
It is very urgent to build memristive synapses and even wearable devices to simulate the basic functions of biological synapses. The linear conductance modulation is the basis of analog memristor for neuromorphic computing. By optimizing the interface engineering wherein Ta/TiOx/TaOx/Ru was fabricated, all the memristor devices with different TiOx thickness showed electroforming-free property. The short-term and long-term plasticity in both potentiation and depression behaviors can be mimicked when TiOx was fixed at 25 nm. The presented memristive synapses simulated the stable paired-pulse facilitation and spike-timing dependent plasticity performance. The potentiation and depression in linearity and symmetry improved with the TiOx thickness increasing, which provides the feasibility for the application of artificial neural network. In addition, the device deposited on polyimide (PI) still exhibits the synaptic performance until the bending radii reaches 6 mm. By carefully tuning the interface engineering, this study can provide general revelation for continuous improvement of the memristive performance in neuromorphic applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    0
    Citations
    NaN
    KQI
    []