Linearity is the property of a mathematical relationship or function which means that it can be graphically represented as a straight line. Examples are the relationship of voltage and current across a resistor (Ohm's law), or the mass and weight of an object. Proportionality implies linearity, but linearity does not imply proportionality.There are three basic definitions for integral linearity in common use: independent linearity, zero-based linearity, and terminal, or end-point, linearity. In each case, linearity defines how well the device's actual performance across a specified operating range approximates a straight line. Linearity is usually measured in terms of a deviation, or non-linearity, from an ideal straight line and it is typically expressed in terms of percent of full scale, or in ppm (parts per million) of full scale. Typically, the straight line is obtained by performing a least-squares fit of the data. The three definitions vary in the manner in which the straight line is positioned relative to the actual device's performance. Also, all three of these definitions ignore any gain, or offset errors that may be present in the actual device's performance characteristics. Linearity is the property of a mathematical relationship or function which means that it can be graphically represented as a straight line. Examples are the relationship of voltage and current across a resistor (Ohm's law), or the mass and weight of an object. Proportionality implies linearity, but linearity does not imply proportionality. In mathematics, a linear map or linear function f(x) is a function that satisfies the following two properties: The homogeneity and additivity properties together are called the superposition principle. It can be shown that additivity implies homogeneity in all cases where α is rational; this is done by proving the case where α is a natural number by mathematical induction and then extending the result to arbitrary rational numbers. If f is assumed to be continuous as well, then this can be extended to show homogeneity for any real number α, using the fact that rationals form a dense subset of the reals. In this definition, x is not necessarily a real number, but can in general be a member of any vector space. A more specific definition of linear function, not coinciding with the definition of linear map, is used in elementary mathematics. The concept of linearity can be extended to linear operators. Important examples of linear operators include the derivative considered as a differential operator, and many constructed from it, such as del and the Laplacian. When a differential equation can be expressed in linear form, it is generally straightforward to solve by breaking the equation up into smaller pieces, solving each of those pieces, and summing the solutions. Linear algebra is the branch of mathematics concerned with the study of vectors, vector spaces (also called linear spaces), linear transformations (also called linear maps), and systems of linear equations. The word linear comes from the Latin word linearis, which means pertaining to or resembling a line. For a description of linear and nonlinear equations, see linear equation. Nonlinear equations and functions are of interest to physicists and mathematicians because they can be used to represent many natural phenomena, including chaos. In a different usage to the above definition, a polynomial of degree 1 is said to be linear, because the graph of a function of that form is a line. Over the reals, a linear equation is one of the forms: