High-throughput small molecule screen identifies inhibitors of microsporidia invasion and proliferation in C. elegans.

2021 
Microsporidia are a diverse group of fungal-related obligate intracellular parasites that infect most animal phyla. Despite the emerging threat that microsporidia have become to humans and agricultural animals, few reliable treatment options exist. To identify novel chemical inhibitors of microsporidia infection, we developed a high-throughput screening method using Caenorhabditis elegans and the microsporidia species Nematocida parisii. We screened the Spectrum Collection of 2,560 FDA-approved compounds and natural products to identify compounds that prevent C. elegans progeny inhibition caused by N. parisii infection. We developed a semi-automated method for quantifying C. elegans progeny number in liquid culture, confirming 11 candidate microsporidia inhibitors. We show that five compounds prevent microsporidia infection by inhibiting spore firing, and demonstrate that one compound, dexrazoxane, slows infection progression. Together, our results demonstrate the effectiveness of C. elegans as a model host for drug discovery against intracellular pathogens and provide a scalable high-throughput system for the identification and characterization of additional microsporidia inhibitors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    0
    Citations
    NaN
    KQI
    []