Nematocida parisii, the nematode-killer from Paris, is a species of Microsporidia fungi. It is found in wild isolates of Caenorhabditis elegans. The species replicates in the intestines of C. elegans. N. parisii is an intracellular parasite that is exclusively transmitted horizontally from one animal to another. The microsporidian spores are likely to exit the cells by disrupting a conserved cytoskeletal structure in the intestine called the terminal web. It seems that none of the known immune pathways of C. elegans is involved in mediating resistance against N. parisii. Microsporidia were found in several nematodes isolated from different locations, indicating that microsporidia are common natural parasites of C. elegans. The N. parisii–C. elegans system represents a very useful tool to study infection mechanisms of intracellular parasites. Additionally, a new species of microsporidia was recently found in a wild caught C. elegans that genome sequencing places in the same genus Nematocida as prior microsporidia seen in these nematodes. This new species was named Nematocida displodere, after a phenotype seen in late infected worms that explode at the vulva to release infectious spores. N. displodere was shown to infect a broad range of tissues and cell types in C. elegans, including the epidermis, muscle, neurons, intestine, seam cells, and coelomocytes. Strangely, the majority of intestinal infection fails to grow to later parasite stages, while the muscle and epidermal infection thrives. This is in stark contrast to N. parisii which infects and completes its entire life cycle in the C. elegans intestine. These related Nematocida species are being used to study the host and pathogen mechanisms responsible for allowing or blocking eukaryotic parasite growth in different tissue niches.