Associations of dietary, lifestyle, other participant characteristics, and oxidative balance scores with plasma F2-isoprostanes concentrations in a pooled cross-sectional study.

2021 
PURPOSE Plasma F2-isoprostanes (FiP) concentration, a reliably measured, valid, systemic oxidative stress biomarker, has been associated with multiple health-related outcomes; however, associations of most individual dietary and lifestyle exposures with FiP are unclear, and there is no reported oxidative balance score (OBS) comprising multiple dietary and/or lifestyle components weighted by their associations with FiP. METHODS To investigate cross-sectional associations of dietary and lifestyle characteristics with plasma FiP concentrations, we used multivariable general linear models to compare adjusted mean FiP concentrations across categories of dietary nutrient and whole-food intakes and lifestyle characteristics in two pooled cross-sectional studies (n = 386). We also developed equal-weight and weighted OBS (nutrient- and foods-based dietary OBS, lifestyle OBS, and total OBS), and compared adjusted mean FiP concentrations across OBS tertiles. RESULTS Among men and women combined, adjusted mean FiP concentrations were statistically significantly, proportionately 28.1% higher among those who were obese relative to those who were normal weight; among those in the highest relative to the lowest total nutrient intake tertiles, FiP concentrations were statistically significantly lower by 9.8% for carotenes, 13.6% for lutein/zeaxanthin, 10.9% for vitamin C, 12.2% for vitamin E, 11.5% for glucosinolates, and 5% for calcium. Of the various OBS, the weighted OBS that combined total nutrient intakes and lifestyle exposures was most strongly associated with FiP concentrations: among those in the highest relative to the lowest total OBS, mean FiP concentrations were statistically significantly 29.7% lower (P < 0.001). CONCLUSION Multiple dietary and lifestyle characteristics, individually, and especially collectively, may contribute to systemic oxidative stress.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []