language-icon Old Web
English
Sign In

Lutein

Lutein (/ˈljuːtiɪn, -tiːn/; from Latin luteus meaning 'yellow') is a xanthophyll and one of 600 known naturally occurring carotenoids. Lutein is synthesized only by plants and like other xanthophylls is found in high quantities in green leafy vegetables such as spinach, kale and yellow carrots. In green plants, xanthophylls act to modulate light energy and serve as non-photochemical quenching agents to deal with triplet chlorophyll (an excited form of chlorophyll), which is overproduced at very high light levels, during photosynthesis. See xanthophyll cycle for this topic. Lutein (/ˈljuːtiɪn, -tiːn/; from Latin luteus meaning 'yellow') is a xanthophyll and one of 600 known naturally occurring carotenoids. Lutein is synthesized only by plants and like other xanthophylls is found in high quantities in green leafy vegetables such as spinach, kale and yellow carrots. In green plants, xanthophylls act to modulate light energy and serve as non-photochemical quenching agents to deal with triplet chlorophyll (an excited form of chlorophyll), which is overproduced at very high light levels, during photosynthesis. See xanthophyll cycle for this topic. Lutein is obtained by animals by ingesting plants. In the human retina, lutein is absorbed from blood specifically into the macula lutea, although its precise role in the body is unknown. Lutein is also found in egg yolks and animal fats. Lutein is isomeric with zeaxanthin, differing only in the placement of one double bond. Lutein and zeaxanthin can be interconverted in the body through an intermediate called meso-zeaxanthin. The principal natural stereoisomer of lutein is (3R,3′R,6′R)-beta,epsilon-carotene-3,3′-diol. Lutein is a lipophilic molecule and is generally insoluble in water. The presence of the long chromophore of conjugated double bonds (polyene chain) provides the distinctive light-absorbing properties. The polyene chain is susceptible to oxidative degradation by light or heat and is chemically unstable in acids. Lutein is present in plants as fatty-acid esters, with one or two fatty acids bound to the two hydroxyl-groups. For this reason, saponification (de-esterfication) of lutein esters to yield free lutein may yield lutein in any ratio from 1:1 to 1:2 molar ratio with the saponifying fatty acid. This xanthophyll, like its sister compound zeaxanthin, has primarily been used in food and supplement manufacturing as a colorant due to its yellow-red color. Lutein absorbs blue light and therefore appears yellow at low concentrations and orange-red at high concentrations. Many songbirds (like evening grosbeak, yellow warbler, common yellowthroat and Javan green magpie) deposit lutein obtained from the diet into growing tissues to color their feathers. Although lutein is concentrated in the macula – a small area of the retina responsible for three-color vision – the precise functional role of retinal lutein has not been determined. In 2013, findings of the Age-Related Eye Disease Study showed that a dietary supplement formulation containing lutein reduced progression of age-related macular degeneration (AMD) by 25 percent. However, lutein and zeaxanthin had no overall effect on preventing AMD, but rather 'the participants with low dietary intake of lutein and zeaxanthin at the start of the study, but who took an AREDS formulation with lutein and zeaxanthin during the study, were about 25 percent less likely to develop advanced AMD compared with participants with similar dietary intake who did not take lutein and zeaxanthin.' In AREDS2, participants took one of four AREDS formulations: the original AREDS formulation, AREDS formulation with no beta-carotene, AREDS with low zinc, AREDS with no beta-carotene and low zinc. In addition, they took one of four additional supplement or combinations including lutein and zeaxanthin (10 mg and 2 mg), omega-3 fatty acids (1,000 mg), lutein/zeaxanthin and omega-3 fatty acids, or placebo. The study reported that there was no overall additional benefit from adding omega-3 fatty acids or lutein and zeaxanthin to the formulation. However, the study did find benefits in two subgroups of participants: those not given beta-carotene, and those who had little lutein and zeaxanthin in their diets. Removing beta-carotene did not curb the formulation's protective effect against developing advanced AMD, which was important given that high doses of beta-carotene had been linked to higher risk of lung cancers in smokers. It was recommended to replace beta-carotene with lutein and zeaxanthin in future formulations for these reasons.

[ "Carotenoid", "Diabetes mellitus", "Carotenoid breakdown", "Marigold extract", "Muriellopsis", "carotenoid composition", "Lutein esters" ]
Parent Topic
Child Topic
    No Parent Topic