Cu and CuO/titanate nanobelt based network assemblies for enhanced visible light photocatalysis.

2014 
3D network configurations of copper(II) oxide/titanate nanobelt (CuO/TiNBs) and copper/titanate nanobelt (Cu/TiNBs) were formed using a two-step polyelectrolyte-assisted synthesis and assembly approach. The photoactivity of the TiNB/CuO and Cu/TiNB composite networks is significantly enhanced as compared to the activity of 3D structures formed of pristine TiNB. An efficient, UV–vis-light-induced electron transfer at the two-component interface achieved by the intimate coupling of TiNB with p-type semiconducting CuO and plasmonic Cu nanoparticles in composite heterostructures facilitates control over the system’s exciton dynamics, which results in highly efficient UV–vis photocatalytic performance of heterostructures. The superior photocatalytic activity of the metal and semiconductor/semiconductor nanocomposite structures in the visible region is discussed, highlighting the role of interfacial electron-charge transfer (IFCT) in semiconductor–semiconductor (CuO/TiNB) and surface plasmon resonance (SPR) of ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    40
    Citations
    NaN
    KQI
    []