Designable Spectrometer-Free Index Sensing Using PlasmonicDoppler Gratings

2019 
Typical nanoparticle-based plasmonic index sensors detect the spectral shift of localized surface plasmon resonance (LSPR) upon the change of the environmental index. Therefore, they require broadband illumination and spectrometers. The sensitivity and flexibility of nanoparticle-based index sensors are usually limited because LSPR peaks are usually broad and the spectral position cannot be freely designed. Here, we present a fully designable index sensing platform using plasmonic Doppler gratings (PDGs), which provide broadband and azimuthal angle dependent grating periodicity. Different from LSPR sensors, PDG index sensors are based on the momentum matching between photons and surface plasmons via the lattice momentum of the grating. Therefore, the index change is translated into the variation of the in-plane azimuthal angle for photon-to-plasmon coupling, which manifests as directly observable dark bands in the reflection image. The PDG can be freely designed to optimally match the range of index varia...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    4
    Citations
    NaN
    KQI
    []