Imaging the sea surface using a dual-sensor towed streamer
2010
Sea-surface profile and reflection coefficient estimates are vital input parameters to various seismic data processing applications. The common assumption of a flat sea surface when processing seismic data can lead to misinterpretations and mislocations of events. A new method of imaging the sea surface from decomposed wavefields has been developed. Wavefield separation is applied to the data acquired by a towed dual-sensor streamer containing collocated pressure and vertical particle velocity sensors to obtain upgoing and downgoing wavefields of the related sensors. Time-gated upgoing and downgoing wavefields corresponding to a given sensor are then extrapolated to the sea surface where an imaging condition is applied so that the time-invariant shape of the sea surface can be recovered. By sliding the data time-window, the temporal changes of the sea surface can be correspondingly estimated. Ray tracing and finite-difference methods were used to generate different controlled data sets used in this feasibility study to demonstrate the imaging principle and to test the image accuracy. The method was also tested on a first field data example of a marginal weather line from the North Sea.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
41
References
17
Citations
NaN
KQI