Defective CD19+CD24hiCD38hi transitional B-cell function in patients with relapsing-remitting MS.

2020 
Background Multiple sclerosis (MS) is characterized by central nervous system (CNS) infiltration of T and B cells, excess inflammatory cytokine and chemokine production and failure of immune regulation. CD19+CD24hiCD38hi transitional B cells producing interleukin (IL)-10 have been shown to suppress interferon-γ (IFNγ) and tumour necrosis factor-α (TNFα) production by CD4+ T cells and to be dysfunctional in autoimmune arthritis and systemic lupus erythematosus. Objective We hypothesized that transitional B-cell-dependent immune regulation could be defective in MS and examined their function in healthy subjects and patients with relapsing-remitting multiple sclerosis (RRMS). Methods A total of 62 healthy donors and 21 RRMS subjects donated peripheral blood for the study. IL-10-producing B cells, IFNγ and TNFα-producing T cells and proliferating T cells were quantified by flow cytometry. Results In healthy individuals, CD19+CD24hiCD38hi transitional B cells produce more IL-10 than CD19+CD24+CD38+ naive and CD19+CD24hiCD38- memory B cells and are able to suppress CD4+ T-cell proliferation and IFNγ and TNFα-production. In subjects with RRMS, CD19+CD24hiCD38hi transitional B cells produce significantly less IL-10 and to fail to suppress effector T-cell function. Conclusion CD19+CD24hiCD38hi transitional B cells physiologically represent the most potent regulatory B-cell subset and are functionally defective in patients with RRMS, an abnormality that may contribute to the immune pathological process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    3
    Citations
    NaN
    KQI
    []