EphrinB–EphB signaling regulates spinal pain processing via PKCγ

2015 
Abstract Spinal ephrinB–EphB signaling is involved in the modulation of pain processing. The aim of the present study was to investigate whether protein kinase C-γ (PKCγ) acts as a downstream effector in regulating spinal pain processing associated with ephrinB–EphB signaling in mice. The intrathecal injection of ephrinB2-Fc, an EphB receptor activator, caused thermal hyperalgesia and mechanical allodynia, as well as increased activation of spinal PKCγ. Knockdown of spinal PKCγ prevented the pain behaviors induced by ephrinB2-Fc. Furthermore, the intrathecal injection of EphB2-Fc, an EphB receptor blocker, suppressed formalin-induced inflammatory, chronic constriction injury (CCI)-induced neuropathic, and tibia bone cavity tumor cell implantation (TCI)-induced bone cancer pain behaviors, in addition to reducing the activation of spinal PKCγ. Finally, the intrathecal injection of MK801, an N -methyl- d -aspartate (NMDA) receptor blocker, prevented the pain behaviors and spinal PKCγ activation induced by ephrinB2-Fc. Overall, the results confirm the important role of PKCγ in the regulation of spinal pain processing associated with ephrinB–EphB signaling.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    16
    Citations
    NaN
    KQI
    []