Organoid Models and Applications in Biomedical Research

2016 
Recent technical advances in the stem cell field have enabled the in vitro generation of complex structures resembling whole organs termed organoids. Most of these approaches employ three-dimensional (3D) culture systems that allow stem cell-derived or tissue progenitor cells to selforganize into 3D structures. These systems evolved, methodologically and conceptually, from classical reaggregation experiments, showing that dissociated cells from embryonic organs can reaggregate and re-create the original organ architecture. Since organoids can be grown from human stem cells and from patient-derived induced pluripotent stem cells, they create significant prospects for modelling development and diseases, for toxicology and drug discovery studies, and in the field of regenerative medicine. Here, we outline historical advances in the field and describe some of the major recent developments in 3D human organoid formation. Finally, we underline current limitations and highlight examples of how organoid technology can be applied in biomedical research.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    0
    Citations
    NaN
    KQI
    []