On the aeroelastic stability and bifurcation structure of subsonic nonlinear thin panels subjected to external excitation

2012 
Dynamic behavior of panels exposed to subsonic flow subjected to external excitation is investigated in this paper. The von Karman’s large deflection equations of motion for a flexible panel and Kelvin’s model of structural damping is considered to derive the governing equation. The panel under study is two-dimensional and simply supported. A Galerkin-type solution is introduced to derive the unsteady aerodynamic pressure from the linearized potential equation of uniform incompressible flow. The governing partial differential equation is transformed to a series of ordinary differential equations by using Galerkin method. The aeroelastic stability of the linear panel system is presented in a qualitative analysis and numerical study. The fourth-order Runge-Kutta numerical algorithm is used to conduct the numerical simulations to investigate the bifurcation structure of the nonlinear panel system and the distributions of chaotic regions are shown in the different parameter spaces. The results shows that the panel loses its stability by divergence not flutter in subsonic flow; the number of the fixed points and their stabilities change after the dynamic pressure exceeds the critical value; the chaotic regions and periodic regions appear alternately in parameter spaces; the single period motion trajectories change rhythmically in different periodic regions; the route from periodic motion to chaos is via doubling-period bifurcation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    17
    Citations
    NaN
    KQI
    []