language-icon Old Web
English
Sign In

Aeroelasticity

Aeroelasticity is the branch of physics and engineering that studies the interactions between the inertial, elastic, and aerodynamic forces that occur when an elastic body is exposed to a fluid flow. Although historical studies have been focused on aeronautical applications, recent research has found applications in fields such as energy harvesting and understanding snoring. The study of aeroelasticity may be broadly classified into two fields: static aeroelasticity, which deals with the static or steady state response of an elastic body to a fluid flow; and dynamic aeroelasticity, which deals with the body's dynamic (typically vibrational) response. Aeroelasticity draws on the study of fluid mechanics, solid mechanics, structural dynamics and dynamical systems.The synthesis of aeroelasticity with thermodynamics is known as aerothermoelasticity, and its synthesis with control theory is known as aeroservoelasticity.Time lapsed film of Active Aeroelastic Wing (AAW) Wing loads test, December, 2002F/A-18A (now X-53) Active Aeroelastic Wing (AAW) flight test, December, 2002 Aeroelasticity is the branch of physics and engineering that studies the interactions between the inertial, elastic, and aerodynamic forces that occur when an elastic body is exposed to a fluid flow. Although historical studies have been focused on aeronautical applications, recent research has found applications in fields such as energy harvesting and understanding snoring. The study of aeroelasticity may be broadly classified into two fields: static aeroelasticity, which deals with the static or steady state response of an elastic body to a fluid flow; and dynamic aeroelasticity, which deals with the body's dynamic (typically vibrational) response. Aeroelasticity draws on the study of fluid mechanics, solid mechanics, structural dynamics and dynamical systems.The synthesis of aeroelasticity with thermodynamics is known as aerothermoelasticity, and its synthesis with control theory is known as aeroservoelasticity. The second failure of Samuel Langley's prototype plane on the Potomac has been attributed to aeroelastic effects (specifically, torsional divergence). An early scientific work on the subject was George Bryan's Theory of the Stability of a Rigid Aeroplane published in 1906. Problems with torsional divergence plagued aircraft in the First World War, and were solved largely by trial-and-error and ad-hoc stiffening of the wing. The first recorded and documented case of flutter in an aircraft was that which occurred to a Handley Page O/400 bomber during a flight in 1916, when it suffered a violent tail oscillation which caused extreme distortion of the rear fuselage and the elevators to move asymmetrically. Although the aircraft landed safely, in the subsequent investigation F. W. Lanchester was consulted. One of his recommendations was that left and right elevators should be rigidly connected by a stiff shaft, which was to subsequently become a design requirement. In addition the National Physical Laboratory (NPL) was asked to investigate the phenomenon theoretically which was subsequently carried out by Leonard Bairstow and Arthur Fage. In 1926, Hans Reissner published a theory of wing divergence, leading to much further theoretical research on the subject. The term aeroelasticity itself was coined by Harold Roxbee Cox and Alfred Pugsley at the Royal Aircraft Establishment (RAE), Farnborough in the early 1930s. In the development of aeronautical engineering at Caltech, Theodore von Kármán started a course 'Elasticity applied to Aeronautics'. After teaching the course for one term, Kármán passed it over to Ernest Edwin Sechler, who developed aeroelasticity in that course, and in publication of textbooks on the subject. In 1947, Arthur Roderick Collar defined aeroelasticity as 'the study of the mutual interaction that takes place within the triangle of the inertial, elastic, and aerodynamic forces acting on structural members exposed to an airstream, and the influence of this study on design.' In an aeroplane, two significant static aeroelastic effects may occur. Divergence is a phenomenon in which the elastic twist of the wing suddenly becomes theoretically infinite, typically causing the wing to fail spectacularly. Control reversal is a phenomenon occurring only in wings with ailerons or other control surfaces, in which these control surfaces reverse their usual functionality (e.g., the rolling direction associated with a given aileron moment is reversed). Divergence occurs when a lifting surface deflects under aerodynamic load so as to increase the applied load, or move the load so that the twisting effect on the structure is increased. The increased load deflects the structure further, which eventually brings the structure to the point of divergence. Divergence can be understood as a simple property of the differential equation(s) governing the wing deflection. For example, modelling the airplane wing as an isotropic Euler–Bernoulli beam, the uncoupled torsional equation of motion is: Where y is the spanwise dimension, θ is the elastic twist of the beam, GJ is the torsional stiffness of the beam, L is the beam length, and M’ is the aerodynamic moment per unit length. Under a simple lift forcing theory the aerodynamic moment is of the form: Where C is a coefficient, U is the free-stream fluid velocity, and α0 is the initial angle of attack. This yields an ordinary differential equation of the form:

[ "Aerodynamics", "Control reversal", "Aerostatics", "Forward-swept wing", "nonlinear flutter", "flutter derivatives" ]
Parent Topic
Child Topic
    No Parent Topic