Imeglimin Amplifies Glucose-Stimulated Insulin Release from Diabetic Islets via a Distinct Mechanism of Action

2020 
Pancreatic islet {beta}-cell dysfunction is characterized by defective glucose-stimulated insulin secretion (GSIS) and is a predominant component of the pathophysiology of diabetes. Imeglimin, a novel first-in-class small molecule tetrahydrotriazine drug candidate, improves glycemia and GSIS in preclinical models and clinical trials in patients with type 2 diabetes; however, the mechanism by which it restores {beta}-cell function is unknown. Here, we show that Imeglimin acutely and directly amplifies GSIS in islets isolated from rodents with Type 2 diabetes via a mode of action that is distinct from other known therapeutic approaches. The underlying mechanism involves increases in the cellular nicotinamide adenine dinucleotide (NAD+) pool - potentially via the salvage pathway and induction of nicotinamide phosphoribosyltransferase (NAMPT) along with augmentation of glucose-induced ATP levels. Further, additional results suggest that NAD+ conversion to a second messenger, cyclic ADP ribose (cADPR), via cyclic ADP ribose hydrolase (CD38) is required for Imeglimins effects in islets, thus representing a potential link between increased NAD+ and enhanced glucose-induced Ca2+ mobilization which - in turn - is known to drive insulin granule exocytosis. Collectively, these findings implicate a novel mode of action for Imeglimin that explains its ability to effectively restore {beta}-cell function and provides for a new approach to treat patients suffering from Type 2 diabetes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    0
    Citations
    NaN
    KQI
    []