The solution conformations of gramicidin A and its analogs

1980 
Abstract The conformational states in dioxane and ethanol of gramicidin A and of analogs varying in chain length and amino acid sequence have been studied. Infrared, CD, and polarization of fluorescence spectra of the peptides were measured, from which dimerization constants were determined and spectral characteristics of the monomeric and dimeric states obtained. Resonance splitting of the amide I ir band has been calculated for all gramicidin A models proposed earlier. Detailed comparison of the experimental and computed spectra showed that the four dimeric gramicidin species present in solution are predominantly antiparallel double ⇅ππ ld helices in equilibrium with smaller amounts of head-to-head associated π LD helices. The gramicidin A monomer was found to be a π LD 4.4 helix in dioxane. For each conformational form the number of residues per turn and the helical sense were determined. The relationship between the amino acid sequence and the structure and stability of the dimer in the series of gramicidin A and its analogs is discussed. The above findings are rationalized in terms of the membrane channel properties of gramicidin A, in particular the conformational rearrangements occurring during the passage of metal ions through the channel and also the differences in conformation of the antibiotic in nonpolar solutions and in the membrane.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    52
    Citations
    NaN
    KQI
    []