language-icon Old Web
English
Sign In

Gramicidin

Gramicidin is a heterogeneous mixture of three antibiotic compounds, gramicidins A, B and C, making up 80%, 6%, and 14%, respectively, all of which are obtained from the soil bacterial species Bacillus brevis and called collectively gramicidin D. Gramicidin D contains linear pentadecapeptides, that is chains made up of 15 amino acids. This is in contrast to gramicidin S, which is a cyclic peptide chain. Gramicidin is a heterogeneous mixture of three antibiotic compounds, gramicidins A, B and C, making up 80%, 6%, and 14%, respectively, all of which are obtained from the soil bacterial species Bacillus brevis and called collectively gramicidin D. Gramicidin D contains linear pentadecapeptides, that is chains made up of 15 amino acids. This is in contrast to gramicidin S, which is a cyclic peptide chain. Gramicidin was discovered in the United States in 1939. Gramicidin is active against Gram-positive bacteria, except for the Gram-positive bacilli, and against select Gram-negative organisms, such as Neisseria bacteria. Its therapeutic use is limited to topical application, as it induces hemolysis in lower concentrations than bacteria cell death, so it cannot be administered internally. Since the exterior epidermis is composed of dead cells, applying it to the surface of the skin will not cause harm. It is used primarily as a topical antibiotic and is one of the three constituents of consumer antibiotic polysporin ophthalmic solution. In 1939, the French-born American microbiologist René Dubos isolated the substance tyrothricin and later showed it was composed of two substances, gramicidin (20%) and tyrocidine (80%). These were the first antibiotics to be manufactured commercially. Gramicidin is a polypeptide with alternating L- and D-amino acids, sharing the general formula: formyl-L-X-Gly-L-Ala-D-Leu-L-Ala-D-Val-L-Val-D-Val-L-Trp-D-Leu-L-Y-D-Leu-L-Trp-D-Leu-L-Trp-ethanolamine X and Y depend upon the gramicidin molecule. There exist valine and isoleucine variants of all three gramicidin species, and 'X' can be either. Y determines which is which; as Y gramicidin A contains tryptophan, B phenylalanine, and C tyrosine. Also note the alternating stereochemical configurations (in the form of D and L) of the amino acids; this is vital to the formation of the β-helix. The chain assembles inside of the hydrophobic interior of the cellular lipid bilayer to form a β-helix. The helix itself is not long enough to span the membrane, but it dimerizes to form the elongated channel needed to span the whole membrane. The structure of the gramicidin head-to-head dimer in micelles and lipid bilayers was determined by solution and solid-state NMR. The structure was first proposed by D. W. Urry in 1971. In organic solvents and crystals, this peptide forms different types of non-native double helices.

[ "Membrane", "Ion", "Communication channel", "Tyrocidine", "Gramicidine", "Gramicidin C", "Gramicidin A", "Gramicidin S" ]
Parent Topic
Child Topic
    No Parent Topic