VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism

2002 
Vascular endothelial growth factor (VEGF) is a principal regulator of blood vessel formation and haematopoiesis1,2, but the mechanisms by which VEGF differentially regulates these processes have been elusive. Here we describe a regulatory loop by which VEGF controls survival of haematopoietic stem cells (HSCs). We observed a reduction in survival, colony formation and in vivo repopulation rates of HSCs after ablation of the VEGF gene in mice. Intracellularly acting small-molecule inhibitors of VEGF receptor (VEGFR) tyrosine kinase dramatically reduced colony formation of HSCs, thus mimicking deletion of the VEGF gene. However, blocking VEGF by administering a soluble VEGFR-1, which acts extracellularly, induced only minor effects. These findings support the involvement in HSC survival of a VEGF-dependent internal autocrine loop mechanism (that is, the mechanism is resistant to inhibitors that fail to penetrate the intracellular compartment). Not only ligands selective for VEGF and VEGFR-2 but also VEGFR-1 agonists rescued survival and repopulation of VEGF-deficient HSCs, revealing a function for VEGFR-1 signalling during haematopoiesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    648
    Citations
    NaN
    KQI
    []