Optimization of Caged Electrophiles for Improved Monitoring of Cysteine Reactivity in Living Cells.

2017 
Cysteine residues serve critical roles in protein function and are susceptible to numerous posttranslational modifications (PTMs) that serve to modulate the activity and localization of diverse proteins. Many of these PTMs are highly transient and labile, necessitating methods to study these modifications directly within the context of living cells. We previously reported a caged electrophilic probe, CBK1, which can be activated by UV for temporally controlled covalent modification of cysteine residues in living cells. To improve upon the number of cysteine residues identified in cellular cysteine-profiling studies, the reactivity and uncaging efficiency of a panel of caged electrophiles were explored. We identified an optimized caged electrophilic probe, CIK4, which affords significantly improved coverage of cellular cysteine residues. The broader proteome coverage afforded by CIK4 renders it a useful tool for the biological investigation of cysteine-reactivity changes and PTMs directly within living cells and highlights design elements that are critical to optimizing photoactivatable chemical probes for cellular labelling.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    19
    Citations
    NaN
    KQI
    []