Elevation of intracellular cyclic AMP in alloreactive CD4(+) T Cells induces alloantigen-specific tolerance that can prevent GVHD lethality in vivo.

2007 
Abstract Cyclic AMP (cAMP) is an important negative regulator of T cell activation, and an increased level of cAMP is associated with T cell hyporesponsiveness in vitro. We sought to determine whether elevating intracellular cAMP levels ex vivo in alloreactive T cells during primary mixed lymphocyte reactions (MLR) is sufficient to induce alloantigen-specific tolerance and prevent graft-versus-host disease (GVHD). Primary MLRs were treated with exogenous 8 Br-cAMP and IBMX, a compound that increases intracellular cAMP levels by inhibition of phosphodiesterases. T cell proliferation and IL-2 responsiveness in the treated primary MLR cultures were greatly reduced, and viable T cells recovered on day 8 also had impaired responses to restimulation with alloantigen compared to control-treated cells, but without an impairment to nonspecific mitogens. Labeling experiments showed that cAMP/IBMX inhibited alloreactive T cell proliferation by limiting the number of cell divisions, increasing susceptibility to apoptosis, and rendering nondeleted alloreactive T cells hyporesponsive to alloantigen restimulation. cAMP/IBMX-treated CD4 + T cells had a markedly reduced capacity for GVHD lethality in major histocompatibility complex class II disparate recipients, but maintained the capacity to mediate other CD4 + T cell responses in vivo. Thus, our results provide the first preclinical evidence of using cAMP-elevating pharmaceutical reagents to achieve long-term alloantigen-specific T cell tolerance that is sufficient to prevent GVHD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    18
    Citations
    NaN
    KQI
    []