MicroRNA‐199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer‐initiating cells
2012
In ovarian cancer, CD44+/CD117+ stem cells, also known as cancer-initiating cells (CICs), are highly proliferative, have a low degree of differentiation, and are resistant to chemotherapeutics. Therefore, the CD44+/CD117+ subpopulation is thought to be an important target for novel therapeutic strategies. In this study, we investigated the role of microRNA-199a (miR-199a) in ovarian cancer stem cells. Luciferase reporter gene assays confirmed that miR-199a targets CD44 via an miR-199a-binding site in the 3′-UTR. CD44+/CD117+ ovarian CICs were enriched from human primary ovarian tumor tissues and confirmed by flow cytometric sorting. miR-199a was cloned and transfected into ovarian CICs. CD44 mRNA and protein expression was significantly decreased in miR-199a-transfected ovarian CICs as compared with miR-199a mutant-transfected and untransfected cells. Cell cycle analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide proliferation assays, the colony formation assay and the transwell migration assay indicated that miR-199a significantly affected cell cycle regulation and suppressed the proliferation and invasive capacity of ovarian CICs in vitro. miR-199a significantly increased the chemosensitivity of ovarian CICs to cisplatin, pacitaxel, and adriamycin, and reduced mRNA expression of the multidrug resistance gene ABCG2 as compared with miR-199a mutant-transfected and untransfected cells. The expression of stemness markers was also significantly reduced in miR-199a-transfected CICs as compared with miR-199a mutant-transfected and untransfected ovarian cells. Furthermore, xenograft experiments confirmed that miR-199a suppressed the growth of xenograft tumors formed by ovarian CICs in vivo. Thus, expression of endogenous mature miR-199a may prevent tumorigenesis in human ovarian cancer by regulating expression of its target gene CD44.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
46
References
190
Citations
NaN
KQI