Pharmacophore Modeling, Ensemble Docking, Virtual Screening, and Biological Evaluation on Glycogen Synthase Kinase-3β.

2014 
Glycogen synthase kinase-3 (GSK-3) is a multifunctional serine/threonine protein kinase which is engaged in a variety of signaling pathways, regulating a wide range of cellular processes. GSK-3β, also known as tau protein kinase I (TPK-I), is one of the most important kinases implicated in the hyperphosphorylation of tau that leads to neurodegenerative diseases. Hence, GSK-3β has emerged as an important therapeutic target. To identify compounds that are structurally novel and diverse compared to previously reported ATP-competitive GSK-3β inhibitors, we performed virtual screening by implementing a mixed ligand/structure-based approach, which included pharmacophore modeling, diversity analysis, and ensemble docking. The sensitivities of different docking protocols to induced-fit effects were explored. An enrichment study was employed to verify the robustness of ensemble docking, using 13 X-ray structures of GSK-3β, compared to individual docking in terms of retrieving active compounds from a decoy dataset. A total of 24 structurally diverse compounds obtained from the virtual screening underwent biological validation. The bioassay results showed that 15 out of the 24 hit compounds are indeed GSK-3β inhibitors, and among them, one compound exhibiting sub-micromolar inhibitory activity is a reasonable starting point for further optimization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    11
    Citations
    NaN
    KQI
    []