Momentum-Dependent Lifetime Broadening of Electron Energy Loss Spectra: A Self-Consistent Coupled-Plasmon Model

2015 
The complex dielectric function and associated energy loss spectrum of a condensed matter system is a fundamental material parameter that determines both the optical and electronic scattering behavior of the medium. The common representation of the electron energy loss function (ELF) is interpreted as the susceptibility of a system to a single- or bulk-electron (plasmon) excitation at a given energy and momentum and is commonly derived as a summation of noninteracting free-electron resonances with forms constrained by adherence to some externally determined optical standard. This work introduces a new causally constrained momentum-dependent broadening theory, permitting a more physical representation of optical and electronic resonances that agrees more closely with both optical attenuation and electron scattering data. We demonstrate how the momentum dependence of excitation resonances may be constrained uniquely by utilizing a coupled-plasmon model, in which high-energy excitations are able to relax into lower-energy excitations within the medium. This enables a robust and fully self-consistent theory with no free or fitted parameters that reveals additional physical insight not present in previous work. The new developments are applied to the scattering behavior of solid molybdenum and aluminum. We find that plasmon and single-electron lifetimes are significantly affected by the presence of alternate excitation channels and show for molybdenum that agreement with high-precision electron inelastic mean free path data is dramatically improved for energies above 20 eV.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    28
    Citations
    NaN
    KQI
    []