IGF1R + Dental Pulp Stem Cells Enhanced Neuroplasticity in Hypoxia-Ischemia Model

2017 
Until now, the surface markers of multipotent mesenchymal stem cells (MSCs) had not been fully identified. Here, we found that the IGF1 receptor (IGF1R), regarded as a pluripotent marker of embryonic stem cells (ESCs), was also expressed in human dental pulp derived-mesenchymal stem cells (hDSCs), which displayed a potential for both self-renewal and multipotency. hDSC-secreted IGF1 interacted with IGF1R through an autocrine signaling pathway to maintain this self-renewal and proliferation potential. Stereotaxic implantation of immunosorted IGF1R+ hDSCs in rats with neonatal hypoxia-ischemia (NHI) promoted neuroplasticity, improving the neurological outcome by increasing expression of the anti-apoptotic protein Bcl-2, which enhanced both neurogenesis and angiogenesis. In addition, treatment with IGF1R+ hDSCs significantly modulated neurite regeneration and anti-inflammation in vivo in NHI rats and in vitro in primary cortical cultures under oxygen/glucose deprivation. Autocrine regulatory expression of IGF1R contributed to maintaining the self-renewal capacity of hDSCs. Furthermore, implantation of IGF1R+ hDSCs increased neuroplasticity with neurite regeneration and immunomodulation in and the NHI rat model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    7
    Citations
    NaN
    KQI
    []