Efficient combinatorial filtering for desired molecular properties of reaction products.

2000 
Abstract Two combinatorial filtering methods for efficiently selecting reaction products with desired properties are presented. The first, “direct reactants” method is applicable only to those molecular properties that are strictly additive or approximately additive, with relatively small interference between neighboring fragments. This method uses only the molecular properties of reactants. The second, “basis products” method can be used to filter not only the strictly additive properties but also the approximately additive molecular properties where a certain degree of mutual influence occurs between neighboring fragments. This method requires the molecular properties of the “basis products,” which are the products formed by combining all the reactants for a given reaction component with the simplest set of complementary reactant partners. There is a one-to-one correspondence between the reactants and the “basis products.” The latter is a product representation of the former. High efficiency of both methods is enhanced further by a tree-sorting and hierarchical selection algorithm, which is performed on the reaction components in a limited space determined systematically from the filtering criteria. The methods are illustrated with product logPs, van der Waals volumes, solvent accessible surface areas, and other product properties. Good results are obtained when filtering for a number of important molecular properties in a virtual library of 1.5 billion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    21
    Citations
    NaN
    KQI
    []