Siomycin A targets brain tumor stem cells partially through a MELK-mediated pathway

2011 
Glioblastoma multiforme (GBM) is a devastating disease, and the current therapies have only palliative effect. Evidence is mounting to indicate that brain tumor stem cells (BTSCs) are a minority of tumor cells that are responsible for cancer initiation, propagation, and maintenance. Therapies that fail to eradicate BTSCs may ultimately lead to regrowth of residual BTSCs. However, BTSCs are relatively resistant to the current treatments. Development of novel therapeutic strategies that effectively eradicate BTSC are, therefore, essential. In a previous study, we used patient-derived GBM sphere cells (stemlike GBM cells) to enrich for BTSC and identified maternal embryonic leucinezipper kinase (MELK) as a key regulator of survival of stemlike GBM cells in vitro. Here, we demonstrate that a thiazole antibiotic, siomycin A, potently reduced MELK expression and inhibited tumor growth in vivo. Treatment of stemlike GBM cells with siomycin A resulted in arrested self-renewal, decreased invasion, and induced apoptosis but had little effect on growth of the nonstem cells of matched tumors or normal neural stem/progenitor cells. MELK overexpression partially rescued the phenotype of siomycin A‐treated stemlike GBM cells. In vivo, siomycin A pretreatment abraded the sizes of stemlike GBM cell‐derived tumors in immunodeficient mice. Treatment with siomycin A of mice harboring intracranial tumors significantly prolonged their survival period compared with the control mice. Together, this study may be the first
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    48
    Citations
    NaN
    KQI
    []