Abstract 1060: Genetic and pharmacologic inhibition of Skp2, an E3 ubiquitin ligase and RB1-target, has antitumor activity in RB1-deficient human and mouse small cell lung cancer (SCLC)
2020
The identification of driver mutations and their corresponding targeted drugs has led to significant improvements in the treatment of non-small cell lung cancer (NSCLC) and other solid tumors; however, similar advances have not been made in the treatment of small cell lung cancer (SCLC). Due to their aggressive growth, frequent metastases, and resistance to chemotherapy, the five-year overall survival of SCLC is less than 5%. While SCLC tumors can be sensitive to first-line therapy of cisplatin and etoposide, most patients relapse, often in less than 3 months after initial therapy. Dozens of drugs have been tested clinically in SCLC, including more than 40 agents that have failed in phase III trials. The near uniform bi-allelic inactivation of the tumor suppressor gene RB1 is a defining feature of SCLC. RB1 is mutated in highly aggressive tumors, including SCLC, where its functional loss, along with that of TP53, is both required and sufficient for tumorigenesis. While it is known that RB1 mutant cells fail to arrest at G1/S in response to checkpoint signals, this information has not led to effective strategies to treat RB1-deficient tumors, and it has been challenging to develop targeted drugs for tumors that are driven by the loss of gene function. Our group previously identified Skp2, a substrate recruiting subunit of the SCF-Skp2 E3 ubiquitin ligase, as an early repression target of pRb whose knockout blocked tumorigenesis in Rb1-deficient prostate and pituitary tumors. Here we used genetic mouse models to demonstrate that deletion of Skp2 completely blocked the formation of SCLC in Rb1/p53-knockout mice (RP mice). Skp2 KO caused an increased accumulation of the Skp2-degradation target p27, a cyclin-dependent kinase inhibitor, and we confirmed this was the mechanism of protection in the RP-Skp2 KO mice by using the knock-in of a mutant p27 that was unable to bind to Skp2. Building on the observed synthetic lethality between Rb1 and Skp2, we found that small molecules that bind to and/or inhibit Skp2 induced apoptosis and inhibited SCLC cell growth. In a panel of SCLC cell lines, growth inhibition by a Skp2 inhibitor was not correlated with sensitivity/resistance to etoposide. Targeting Skp2 also had in vivo antitumor activity in mouse tumors and human patient-derived xenograft models of SCLC. Using the genetic and pharmacologic approaches, antitumor activity was seen in vivo in established SCLC primary lung tumors, in liver metastases, and in chemotherapy-resistant tumors. The identification and validation of an actionable target downstream of RB1 could have a broad impact on treatment of SCLC and other advanced tumors with mutant RB1, for which there are currently no targeted therapies available. Citation Format: Hongling Zhao, Vineeth Sukrithan, Niloy Iqbal, Cari Nicholas, Yingjiao Xue, Joseph Locker, Juntao Zou, Liang Zhu, Edward L. Schwartz. Genetic and pharmacologic inhibition of Skp2, an E3 ubiquitin ligase and RB1-target, has antitumor activity in RB1-deficient human and mouse small cell lung cancer (SCLC) [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 1060.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI