Exogenous FGF-4 Can Suppress Anterior Development in the Mouse Embryo during Neurulation and Early Organogenesis

2000 
Abstract Members of the fibroblast growth factor (FGF) family of peptide growth factors are widely expressed in the germ layer derivatives during gastrulation and early organogenesis of the mouse. We have investigated the effect of administering recombinant FGF-4 in the late-primitive streak stage embryo to test if the patterning of the body plan may be influenced by this growth factor. Shortly after FGF treatment the embryonic tissues up-regulated the expression of Brachyury and the RTK signaling regulator Spry2, suggesting that FGF signaling was activated as an immediate response to exogenous FGF. Concomitantly, Hesx1 expression was suppressed in the prospective anterior region of the embryo. After 24 h of in vitro development, embryos displayed a dosage-related suppression of forebrain morphogenesis, disruption of the midbrain–hindbrain partition, and inhibition of the differentiation of the embryonic mesoderm. Overall, development of the anterior–posterior axis in the late gastrula is sensitive to the delivery of exogenous FGF-4. The early response associated with the expression of Spry2 suggests that the later phenotype observed could be primarily related to an inhibition of the FGF signaling pathway.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    16
    Citations
    NaN
    KQI
    []