language-icon Old Web
English
Sign In

Gastrulation

Gastrulation is a phase early in the embryonic development of most animals, during which the single-layered blastula is reorganized into a multilayered structure known as the gastrula. Before gastrulation, the embryo is a continuous epithelial sheet of cells; by the end of gastrulation, the embryo has begun differentiation to establish distinct cell lineages, set up the basic axes of the body (e.g. dorsal-ventral, anterior-posterior), and internalized one or more cell types including the prospective gut. Gastrulation is a phase early in the embryonic development of most animals, during which the single-layered blastula is reorganized into a multilayered structure known as the gastrula. Before gastrulation, the embryo is a continuous epithelial sheet of cells; by the end of gastrulation, the embryo has begun differentiation to establish distinct cell lineages, set up the basic axes of the body (e.g. dorsal-ventral, anterior-posterior), and internalized one or more cell types including the prospective gut. In triploblastic organisms the gastrula is trilaminar ('three-layered'). These three germ layers are known as the ectoderm, mesoderm, and endoderm. In diploblastic organisms, such as Cnidaria and Ctenophora, the gastrula has only ectoderm and endoderm. The two layers are also sometimes referred to as the hypoblast and epiblast. Gastrulation takes place after cleavage and the formation of the blastula. Gastrulation is followed by organogenesis, when individual organs develop within the newly formed germ layers. Each layer gives rise to specific tissues and organs in the developing embryo. The ectoderm gives rise to epidermis, the nervous system, and to the neural crest in vertebrates. The endoderm gives rise to the epithelium of the digestive system and respiratory system, and organs associated with the digestive system, such as the liver and pancreas. The mesoderm gives rise to many cell types such as muscle, bone, and connective tissue. In vertebrates, mesoderm derivatives include the notochord, the heart, blood and blood vessels, the cartilage of the ribs and vertebrae, and the dermis. Following gastrulation, cells in the body are either organized into sheets of connected cells (as in epithelia), or as a mesh of isolated cells, such as mesenchyme. The molecular mechanism and timing of gastrulation is different in different organisms. However, some common features of gastrulation across triploblastic organisms include: (1) A change in the topological structure of the embryo, from a simply connected surface (sphere-like), to a non-simply connected surface (torus-like); (2) the differentiation of cells into one of three types (endodermal, mesodermal, and ectodermal); and (3) the digestive function of a large number of endodermal cells. The signaling pathways, which refers to the signals that indicate activation or inhibition of something else in the organism, are often different depending on the organism as well. Lewis Wolpert, pioneering developmental biologist in the field, has been credited for noting that 'It is not birth, marriage, or death, but gastrulation which is truly the most important time in your life.' The terms 'gastrula' and 'gastrulation' were coined by Ernst Haeckel, in his 1872 work 'Biology of Calcareous Sponges'. Although gastrulation patterns exhibit enormous variation throughout the animal kingdom, they are unified by the five basic types of cell movements that occur during gastrulation: 1) invagination 2) involution 3) ingression 4) delamination 5) epiboly.

[ "Embryogenesis", "Embryonic stem cell", "Somatopleuric mesenchyme", "Engystomops randi", "Bilaminar blastocyst", "Mesoderm Cell", "Notochordal Plate" ]
Parent Topic
Child Topic
    No Parent Topic