Heliospheric Evolution of Magnetic Clouds.

2019 
Interplanetary evolution of eleven magnetic clouds (MCs) recorded by at least two radially aligned spacecraft is studied. The in situ magnetic field measurements are fitted to a cylindrically symmetric Gold-Hoyle force-free uniform-twist flux-rope configuration. The analysis reveals that in a statistical sense the expansion of studied MCs is compatible with self-similar behavior. However, individual events expose a large scatter of expansion rates, ranging from very weak to very strong expansion. Individually, only four events show an expansion rate compatible with the isotropic self-similar expansion. The results indicate that the expansion has to be much stronger when MCs are still close to the Sun than in the studied 0.47 - 4.8 AU distance range. The evolution of the magnetic field strength shows a large deviation from the behavior expected for the case of an isotropic self-similar expansion. In the statistical sense, as well as in most of the individual events, the inferred magnetic field decreases much slower than expected. Only three events show a behavior compatible with a self-similar expansion. There is also a discrepancy between the magnetic field decrease and the increase of the MC size, indicating that magnetic reconnection and geometrical deformations play a significant role in the MC evolution. About half of the events show a decay of the electric current as expected for the self-similar expansion. Statistically, the inferred axial magnetic flux is broadly consistent with it remaining constant. However, events characterized by large magnetic flux show a clear tendency of decreasing flux.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    0
    Citations
    NaN
    KQI
    []