Recent developments and applications of quantitative laser light sheet measuring techniques in turbomachinery components

2000 
Concerning the further development of gas turbine engines, advances of the aero-thermodynamic design can be achieved most efficiently by co-operative efforts aimed at the improvement of both the numerical simulation methods and the experimental test and measurement techniques. Rapid development of numerical capability is accompanied by increasing demands on experimental data. In this context significant instrumentation research efforts are being conducted to develop the needed measurement technologies. Because of the need for reduced experimental costs planar measurement techniques have undergone a rapid pace of development. Three newly developed quantitative light sheet techniques utilizing the scattered light of tracer particles are described in this paper. First a Doppler global velocimetry (DGV) system optimized for time-averaged three component velocity measurements is presented. The system, which uses a single viewing direction in conjunction with three different illumination directions enables very accurate velocity measurements. Second a quantitative light sheet (QLS) technique for quantitative mass fraction measurements in mixing processes is treated. To apply the technique the inflow of the mixing experiment must consist at least of two separate flows, one of which can be seeded while the other remains unseeded. DGV and QLS results obtained from experimental investigation in a model combuster are presented. Third a method named tracer-based shock visualization (TSV) is described which is capable of determining the shape and structure of shock waves in transonic flows by analysing the sudden increase of flow density across a shock. Results taken in a transonic compressor are presented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    51
    Citations
    NaN
    KQI
    []