Regulation of Tetrahydrobiopterin Biosynthesis by Shear Stress

2007 
An essential cofactor for the endothelial NO synthase is tetrahydrobiopterin (H4B). In the present study, we show that in human endothelial cells, laminar shear stress dramatically increases H4B levels and enzymatic activity of GTP cyclohydrolase (GTPCH)-1, the first step of H4B biosynthesis. In contrast, protein levels of GTPCH-1 were not affected by shear. Shear did not change protein expression or activity of the downstream enzymes 6-pyruvoyl-tetrahydropterin synthase and sepiapterin reductase and decreased protein levels of the salvage enzyme dihydrofolate reductase. Oscillatory shear only modestly affected H4B levels and GPTCH-1 activity. We also demonstrate that laminar, but not oscillatory shear stress, stimulates phosphorylation of GTPCH-1 on serine 81 and that this is mediated by the α prime (α′) subunit of casein kinase 2. The increase in H4B caused by shear is essential in allowing proper function of endothelial NO synthase because GPTCH-1 blockade with 2,4-diamino-6-hydroxypyrimidine during sh...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    109
    Citations
    NaN
    KQI
    []