language-icon Old Web
English
Sign In

Tetrahydrobiopterin

Tetrahydrobiopterin (BH4, THB), also known as sapropterin, is a cofactor of the three aromatic amino acid hydroxylase enzymes, used in the degradation of amino acid phenylalanine and in the biosynthesis of the neurotransmitters serotonin (5-hydroxytryptamine, 5-HT), melatonin, dopamine, norepinephrine (noradrenaline), epinephrine (adrenaline), and is a cofactor for the production of nitric oxide (NO) by the nitric oxide synthases. Chemically, its structure is that of a reduced pteridine derivative. Tetrahydrobiopterin (BH4, THB), also known as sapropterin, is a cofactor of the three aromatic amino acid hydroxylase enzymes, used in the degradation of amino acid phenylalanine and in the biosynthesis of the neurotransmitters serotonin (5-hydroxytryptamine, 5-HT), melatonin, dopamine, norepinephrine (noradrenaline), epinephrine (adrenaline), and is a cofactor for the production of nitric oxide (NO) by the nitric oxide synthases. Chemically, its structure is that of a reduced pteridine derivative. Tetrahydrobiopterin is available as a tablet for oral administration in the form of tetrahydrobiopterin dihydrochloride (BH4*2HCL). BH4*2HCL is FDA approved under the trade name Kuvan. The typical cost of treating a patient with Kuvan is $100,000 per year. BioMarin holds the patent for Kuvan until at least 2024, but Par Pharmaceutical has a right to produce a generic version by 2020. BH4*2HCL is indicated in tetrahydrobiopterin deficiency caused by GTPCH deficiency or PTPS deficiency. Also, BH4*2HCL is FDA approved for use in phenylketonuria, along with dietary measures. Most people with phenylketonuria, however, have little or no benefit of BH4*2HCL. The most common adverse effects, observed in more than 10% of patients, include headache and a running or obstructed nose. Diarrhea and vomiting are also relatively common, seen in at least 1% of patients. No interaction studies have been conducted. Because of its mechanism, tetrahydrobiopterin might interact with dihydrofolate reductase inhibitors like methotrexate and trimethoprim, and NO-enhancing drugs like nitroglycerin, molsidomine, minoxidil, and PDE5 inhibitors. Combination of tetrahydrobiopterin with levodopa can lead to increased excitability. Tetrahydrobiopterin has multiple roles in human biochemistry. The major one is to convert amino acids such as phenylalanine, tyrosine, and tryptophan to precursors of dopamine and serotonin, major monoamine neurotransmitters. It works as a cofactor, being required for an enzyme's activity as a catalyst, mainly hydroxylases. Tetrahydrobiopterin is a cofactor for tryptophan hydroxylase (TPH) for the conversion of L-tryptophan (TRP) to 5-hydroxytryptophan (5-HTP). Phenylalanine hydroxylase (PAH) catalyses the conversion of L-phenylalanine (PHE) to L-tyrosine (TYR). Therefore, a deficiency in tetrahydrobiopterin can cause severe neurological issues unrelated to a toxic buildup of L-phenylalanine. Tyrosine hydroxylase (TH) catalyses the conversion of L-tyrosine to L-DOPA (DOPA), which is the precursor for dopamine. Dopamine is a vital neurotransmitter, and is the precursor of norepinephrine and epinephrine. Thus, a deficiency of BH4 can lead to systemic deficiencies of dopamine, norepinephrine, and epinephrine. In fact, one of the primary conditions that can result from GTPCH-related BH4 deficiency is dopamine-responsive dystonia; currently, this condition is typically treated with carbidopa/levodopa, which directly restores dopamine levels within the brain.

[ "Nitric oxide synthase", "Cofactor", "GTP cyclohydrolase I", "Sepiapterin reductase", "Dihydrobiopterin reductase", "Alkylglycerol monooxygenase", "Biopterin" ]
Parent Topic
Child Topic
    No Parent Topic