Deficits of brainstem and spinal cord functions after neonatal hypoxia–ischemia in mice

2014 
Perinatal cerebral hypoxia–ischemia (HI) can lead to severe neurodevelopmental disorders. Studies in humans and animal models mainly focused on cerebral outcomes, and little is known about the mechanisms that may affect the brainstem and the spinal cord. Dysfunctions of neuromodulatory systems, such as the serotonergic (5-HT) projections, critical for the development of neural networks, have been postulated to underlie behavioral and motor deficits, as well as metabolic changes. The aim of this study was to investigate brainstem and spinal cord functions by means of plethysmography and sensorimotor tests in a neonatal Rice–Vanucci model of HI in mice. We also evaluated bioaminergic contents in central regions dedicated to the motor control of autonomic functions. Mice with cerebral infarct expressed motor disturbances and had a lower body weight and a decreased respiratory frequency than SHAM, suggesting defects of brainstem neural network involved in the motor control of feeding, suckling, swallowing, and respiration. Moreover, our study revealed changes of monoamine and amino acid contents in the brainstem and the spinal cord of HI mice. Our results suggest that monoaminergic neuromodulation plays an important role in the physiopathology of HI brain injury that may represent a good therapeutic target.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    12
    Citations
    NaN
    KQI
    []