Mono- and bi-allelic protein truncating variants in alpha-actinin 2 cause cardiomyopathy through distinct mechanisms

2020 
Alpha-actinin 2 (ACTN2) anchors actin within cardiac sarcomeres. The mechanisms linking ACTN2 mutations to myocardial disease phenotypes are unknown. Here, we characterize patients with novel ACTN2 mutations to reveal insights into the physiological function of ACTN2. Patient-derived iPSC-cardiomyocytes harboring ACTN2 protein-truncating variants were hypertrophic, displayed sarcomeric structural disarray, impaired contractility, and aberrant Ca2+-signaling. In heterozygous indel cells, the truncated protein incorporates into cardiac sarcomeres, leading to aberrant Z-disc structure. In homozygous stop-gain cells, affinity-purification mass spectrometry reveals an intricate ACTN2 interactome with sarcomere and sarcolemma-associated proteins. Loss of the C-terminus of ACTN2 disrupts interaction with ACTN1 and GJA1, two sarcolemma-associated proteins, that may lead to the clinical arrhythmic and relaxation defects. The causality of the stop-gain mutation was verified using CRISPR-Cas9 gene editing. Together, these data advance our understanding of the role of ACTN2 in the human heart and establish recessive inheritance of ACTN2 truncation as causative of disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    1
    Citations
    NaN
    KQI
    []