Geometric and energy-aware decomposition of the Navier-Stokes equations: A port-Hamiltonian approach.

2021 
A port-Hamiltonian model for compressible Newtonian fluid dynamics is presented in entirely coordinate-independent geometric fashion. This is achieved by use of tensor-valued differential forms that allow to describe describe the interconnection of the power preserving structure which underlies the motion of perfect fluids to a dissipative port which encodes Newtonian constitutive relations of shear and bulk stresses. The relevant diffusion and the boundary terms characterizing the Navier-Stokes equations on a general Riemannian manifold arise naturally from the proposed construction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []