language-icon Old Web
English
Sign In

Differential form

In the mathematical fields of differential geometry and tensor calculus, differential forms are an approach to multivariable calculus that is independent of coordinates. Differential forms provide a unified approach to define integrands over curves, surfaces, volumes, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics. d f = ∑ i = 1 n ∂ f ∂ x i d x i . {displaystyle df=sum _{i=1}^{n}{frac {partial f}{partial x^{i}}},dx^{i}.}     (*) In the mathematical fields of differential geometry and tensor calculus, differential forms are an approach to multivariable calculus that is independent of coordinates. Differential forms provide a unified approach to define integrands over curves, surfaces, volumes, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics. For instance, the expression f(x) dx from one-variable calculus is an example of a 1-form, and can be integrated over an interval in the domain of f: Similarly, the expression f(x, y, z) dx ∧ dy + g(x, y, z) dz ∧ dx + h(x, y, z) dy ∧ dz is a 2-form that has a surface integral over an oriented surface S: The symbol ∧ denotes the exterior product, sometimes called the wedge product, of two differential forms. Likewise, a 3-form f(x, y, z) dx ∧ dy ∧ dz represents a volume element that can be integrated over a region of space. In general, a k-form is an object that may be integrated over k-dimensional sets, and is homogeneous of degree k in the coordinate differentials. The algebra of differential forms is organized in a way that naturally reflects the orientation of the domain of integration. There is an operation d on differential forms known as the exterior derivative that, when acting on a k-form, produces a (k + 1)-form. This operation extends the differential of a function, and is directly related to the divergence and the curl of a vector field in a manner that makes the fundamental theorem of calculus, the divergence theorem, Green's theorem, and Stokes' theorem special cases of the same general result, known in this context also as the generalized Stokes' theorem. In a deeper way, this theorem relates the topology of the domain of integration to the structure of the differential forms themselves; the precise connection is known as de Rham's theorem. The general setting for the study of differential forms is on a differentiable manifold. Differential 1-forms are naturally dual to vector fields on a manifold, and the pairing between vector fields and 1-forms is extended to arbitrary differential forms by the interior product. The algebra of differential forms along with the exterior derivative defined on it is preserved by the pullback under smooth functions between two manifolds. This feature allows geometrically invariant information to be moved from one space to another via the pullback, provided that the information is expressed in terms of differential forms. As an example, the change of variables formula for integration becomes a simple statement that an integral is preserved under pullback. Differential forms are part of the field of differential geometry, influenced by linear algebra. Although the notion of a differential is quite old, the initial attempt at an algebraic organization of differential forms is usually credited to Élie Cartan with reference to his 1899 paper. Some aspects of the exterior algebra of differential forms appears in Hermann Grassmann's 1844 work, Die Lineale Ausdehnungslehre, ein neuer Zweig der Mathematik (The Theory of Linear Extension, a New Branch of Mathematics). Differential forms provide an approach to multivariable calculus that is independent of coordinates. A differential k-form can be integrated over a manifold of dimension k. A differential one-form can be thought of as measuring an infinitesimal (oriented) length, or one-dimensional density. A differential two-form can be thought of as measuring an infinitesimal (oriented) area, or two-dimensional density. And so on.

[ "Geometry", "Topology", "Mathematical analysis", "Pure mathematics", "Exterior derivative", "Discrete exterior calculus", "Current (mathematics)" ]
Parent Topic
Child Topic
    No Parent Topic