Rational Design of a Multifunctional Binder for High-Capacity Silicon-Based Anodes

2019 
Although several principles have been recognized to fabricate a nominal “better” binder, there continues to be a lack of a rational design and synthesis approach that would meet the robust criteria required for silicon (Si) anodes. Herein, we report a synthetic polymer binder, i.e., catechol-functionalized chitosan cross-linked by glutaraldehyde (CS-CG+GA), that serves dual functionalities: (a) wetness-resistant adhesion capability via catechol grafting and (b) mechanical robustness via in situ formation of a three-dimensional (3D) network. A SiNP-based anode with a designed functional polymer network (CS-CG10%+6%GA) exhibits a capacity retention of 91.5% after 100 cycles (2144 ± 14 mAh/g). Properties that are traditionally considered to be advantageous, including stronger adhesion strength and higher mechanical robustness, do not always improve the binder performance. A clear relationship between these properties and ultimate electrochemical performance is established by assessing the rheological behavio...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    58
    Citations
    NaN
    KQI
    []